Centre Number	Candidate Number	
Surname		
Other Names		
Candidate Signature	- 0	

Level 2 Certificate in Further Mathematics June 2012

8360/2

Further Mathematics Level 2 Paper 2 Calculator

Friday 1 June 2012 1.30 pm to 3.30 pm

For this paper you must have:	
a calculator	
mathematical instruments.	

Time allowed

2 hours

Instructions

- Use black ink or black ball-point pen. Draw diagrams in pencil.
- · Fill in the boxes at the top of this page.
- · Answer all questions.
- You must answer the questions in the spaces provided. Do not write outside the box around each page or on blank pages.
- Do all rough work in this book. Cross through any work that you do not want to be marked.
- In all calculations, show clearly how you work out your answer.

Information

- · The marks for questions are shown in brackets.
- · The maximum mark for this paper is 105.
- You may ask for more answer paper, graph paper and tracing paper.
 These must be tagged securely to this answer booklet.
- The use of a calculator is expected but calculators with a facility for symbolic algebra must not be used.

Formulae Sheet

Volume of sphere
$$=\frac{4}{3}\pi r^3$$

Surface area of sphere =
$$4\pi r^2$$

Volume of cone =
$$\frac{1}{3}\pi r^2 h$$

Curved surface area of cone
$$=\pi rl$$

In any triangle ABC

Area of triangle =
$$\frac{1}{2}ab \sin C$$

Sine rule
$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

Cosine rule

$$a^2 = b^2 + c^2 - 2bc\cos A$$

$$\cos A = \frac{b^2 + c^2 - a^2}{2bc}$$

The Quadratic Equation

The solutions of
$$ax^2 + bx + c = 0$$
, where $a \neq 0$, are given by $x = \frac{-b \pm \sqrt{(b^2 - 4ac)}}{2a}$

Trigonometric Identities

$$\tan \theta \equiv \frac{\sin \theta}{\cos \theta}$$
 $\sin^2 \theta + \cos^2 \theta \equiv 1$

Answer all questions in the spaces provided.

1 Here is a sketch of the circle $x^2 + y^2 = 36$

Work out the circumference of the circle.

 $x^2 + y^2 = 6^2$ is the equation of a circle centred at (0,0) with radius 6. ... Circumference of circle $= 2\pi\Gamma = 2\pi(6) = 12\pi = 37.7 (3s.f.)$.

Answer 12TT or 37.7 (38.F.) (3 marks)

Turn over for the next question

 $y = 5x^3 - 4x^2$

Work out $\frac{dy}{dx}$.

$$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{15}{2} \times \frac{2}{3} - \frac{2}{3} \times \frac{2}{3} \tag{2 marks}$$

3

Work out the length of *PQ*. Give your answer to 3 significant figures.

PQ	= 10	<2-α)2+	(4)2-	5.)2	- 2	1(9-1)2-	+ (2-6)2
$= \sqrt{8^2}$	+ (-4)2 =	= 1	80	=	8.94	(35. F.).
						E)	7	

$$PQ = 8.94 (3s.f.)$$
 (4 marks)

A sketch of $y = ax^2 + bx + c$ is shown. The minimum point is (2, -3). 4

For the sketch shown, circle the correct answer in each of the following.

The value of a is 4 (a)

zero

positive

negative

(1 mark)

4 (b) The value of c is

zero

positive

negative

(1 mark)

The solutions of $ax^2 + bx + c = 0$ are 4 (c)

both zero

both positive

both negative

one positive and one negative

(1 mark)

The **number** of solutions of $ax^2 + bx + c = -6$ is 4 (d)

2

3 (1 mark)

The equation of the tangent to $y = ax^2 + bx + c$ at (2, -3) is 4 (e)

$$x = 2$$

y = 2 x = -3

y = -3(1 mark)

5 ABC is a triangle. P is a point on AB such that AP = PC = BCAngle BAC = x

Not drawn accurately

5 (a) Prove that angle ABC = 2x

ACP = 26 and BPC = ABC (Base angles of an isosceles triangle are equal). APC = 180-2x and BPC = 180-(180-2x)=2x=ABCOther theorems used: Angles of a triangle and angles across a straight line add to 180° . (3 marks)

5 (b) You are also given that AB = AC

Work out the value of x.

$$ABC = ACB =$$
 $2x = 180 - 4x + x$
=> $2x = 180 - 3x$
=> $5x = 180$: $x = \frac{180}{5} = 36^{\circ}$

 $x = \frac{36}{}^{\circ}$ degrees (3 marks)

6 (a)	Expand $3x(2x-5y)$
	Answer $6x^2 - 15xy$ (2 marks)
6 (b)	Expand and simplify $(3x + 2y)(3x - 4y)$ $9x^2 - 12xy + 6xy - 8y^2$ $= 9x^2 - 6xy - 8y^2$
	Answer $92c^2 - 63cy - 85^2$ (3 marks)
6 (c)	Work out the ratio $(3x+2y)(3x-4y):3x(2x-5y)$ when $y=0$
	Give your answer as simply as possible. $(3x+2(0))(3x-4(0)): 3x(2x-5(0))$ $= 3x(3x): 3x(2x)$ $= 3x: 2x = 3: 2$
	Answer3 (2 marks)
7	$1 \leqslant m \leqslant 5$ and $-9 \leqslant n \leqslant 2$
7 (a)	Work out an inequality for $m+n$.
	$1+(-9) \le m+n \le 5+2$
	\Rightarrow $-8 \leq m+n \leq 7$
	Answer $\leq m+n \leq \dots \neq 1$ (2 marks)
7 (b)	Work out an inequality for $(m+n)^2$.
	$(m+n)^2 \ 7 \ 0 \ \text{and} \ m+n \le 8 \Rightarrow (m+n)^2 \le 64$:. $0 \le (m+n)^2 \le 64$
	Answer $\leq (m+n)^2 \leq \dots \leq 4$ (2 marks)

8 Four graphs are shown for $180^{\circ} \le x \le 360^{\circ}$

Graph A

Graph B

Graph C

Graph D

8 (a) Which graph is $y = \sin x$?

Graph	(1 mark
Graph	(I IIIaik

8 (b) Which graph is $y = \cos x$?

9 Here is a formula.

$$5t + 3 = 4w(t + 2)$$

9 (a) Rearrange the formula to make *t* the subject.

5t+	3 =	4Wt	+	861
		•••••	• • • • • • • • • • • • • • • • • • • •	9 7

$$t(5-4w) = 8w-3$$

$$E = \frac{8W - 3}{5 - 4W}$$

8w-3_

9 (b) Work out the exact value of t when
$$w = -\frac{1}{8}$$

Give your answer in its simplest form.

$$t = 8(-\frac{1}{8}) - 3 = -1 - 3 = -4 = -8$$

$$5 - 4(-\frac{1}{8}) = 5 + \frac{1}{2} = \frac{11}{2} = \frac{11}{2}$$

$$t = \frac{8}{1}$$
 (3 marks)

10 An aircraft flies y kilometres in a straight line at an angle of elevation of 28°. The gain in height is 7 kilometres.

Not drawn accurately

Work out the value of y.

- = 14.9 km (3s.f.).

 $y = \frac{14.9 \text{ km (3 marks)}}{(3 \text{ s.f.})}$

11 A sphere has radius x centimetres.

A hemisphere has radius y centimetres.

The shapes have equal volumes.

Work out the value of $\frac{y}{x}$.

Give your answer in the form $a^{\frac{1}{3}}$ where a is an integer.

Expand and simplify $(t+4)^3$ $(x+y)^n = \sum_{r=0}^n \binom{n}{r} x^{n-r} y^r$ where $\binom{n}{r} = \binom{n}{r} = \binom{n}{r$

13

 $\Rightarrow A = \cos^{2}\left(\frac{b^{2}+c^{2}-a^{2}}{2bc}\right)$ $\Rightarrow C = \cos^{-1}\left(\frac{16^{2}+9^{2}-20^{2}}{2(16)(9)}\right)$ $= 102.6^{\circ}(1d.p.).$

 $c = \frac{102.6 \text{ degrees } (3 \text{ marks})}{14.p.}$

12

Turn over ▶

The sketch shows a circle, centre C, radius 5. The circle passes through the points A (-2, 8) and B (6, 8). The x-axis is a tangent to the circle.

Work out the equation of the circle.

Let
$$C = (a, b)$$
. $a = \frac{6 + (-2)}{2} = 2$.
Then $b^2 = (8 - b)^2 + 4^2$ (Pythagoras)
=> $b^2 = 64 - 16b + b^2 + 16$
=> $16b = 80$ => $b = \frac{80}{16} = 5$: $(a_1b) = (2,5)$
and equation of circle is given by $(x-2)^2 + (y-5)^2 = 5^2$

Answer $(2x-2)^2+(5-5)^2=25$ (4 marks)

15 (a) f(x) = 3x - 5 for all values of x.

Solve $f(x^2) = 43$

$$3x^2 - 5 = 43$$

=> $3x^2 - 5 = 43$

Answer
$$DC = 40r - 4$$
 (4 marks)

15 (b) A sketch of y = g(x) for domain $0 \le x \le 8$ is shown.

The graph is symmetrical about x = 4The range of g(x) is $0 \le g(x) \le 12$

Work out the function g(x).

For
$$0 \le x \le 4$$
 $g(x) = \frac{12-9}{4-0}x = 3x$
For $4 < x \le 8$, $g(x) = \frac{0-12}{8-4}x + C$

=
$$-3x + c$$
 passing through $(8,0)$
=> $0 = -3(8) + c => c = 24 :- $5(x) = -3x + 24$$

$$g(x) = \dots 0 \le x \le 4$$

$$-3 \times + 2 + \dots 4 < x \le 8$$

(5 marks)

Turn over ▶

+ 116 tors 2 marks)
d (x-5)

17 ABCD is a square of side length 4x.

E is the midpoint of BC.

DF:FC = 1:3

Work out the value of k.

Area of triangle AEF = 4x(4x) - \frac{1}{2}(2x)(4)	x)
$-\frac{1}{2}(2\pi)(3\pi) - \frac{1}{2}\pi(4\pi) = 16\pi^2 - 4\pi^2 - 3$	χ^2
$-20c^2 = 70c^2$	
:. k = 7	
	•••••
	•••••
	•••••

	7	
k =		(5 marks)

Turn over ▶

18
$$(x-5)^2 + a \equiv x^2 + bx + 28$$

Work out the values of a and b.

$$(x-5)^2 + a = 2c^2 - 102c + 25 + a = 2c^2 + 62c + 28$$

$$a = 3$$
 $b = 0$ (3 marks)

19 Solve the simultaneous equations

$$x + y = 4$$

$$y^2 = 4x + 5$$

$$\cdots \qquad 2$$

Do not use trial and improvement.

From D,
$$x = 4 - y$$
. $[1 2], y^2 = 4(4 - y) + 5$

$$=> y^2 = 16 - 4y + 5$$

$$=)$$
 $y^2 + 4y - 21 = 0$

$$=) (y + 7)(y - 3) = 0$$

$$(x,y) = (11,-7) or (1,3)$$

Answer
$$(x,y) = (11,-7) \circ c (1,3)$$
 (6 marks)

20	For what values of x is $y = 150x - 2x^3$ an increasing function?
	y = f(x) is an increasing function for all values
	of ox which solver dy so
	For $y = 150x - 2x^3$, $\frac{dy}{dx} = 150 - 6x^2$
	150-6×2>0 => 6×2<150
	$\Rightarrow x^2 < 25 \Rightarrow x < 5$
	:. oc > -5 and oc < 5, i.e5 < oc < 5
	Answer - 5 < 0< < 5 (4 marks)

Turn over for the next question

To visualise this, consider the sketch of $f'(x) = -6x^2 + 150$ y=f'(x)

Now we can see clearly from the sketch that f'(x)>0 - and thus, f(x) an increasing function - in the bounded interval for oc given by -5 < x < 5.

Turn over ▶

21 The equations of three straight lines are

$$y = 2x$$

$$x + 3y = 0$$

$$2y = 11x - 7$$

The lines intersect at the points O, A and B as shown on this sketch.

Show that length $OB = \text{length } AB$
$y = 2x \dots 0$ $2y = 11x - 7 \dots 2$ $x + 3y = 0 \dots 3$
For intersection point A, consider 2) and 3).
From 3, 26= -3y. In 2, 2y=11(-3y)-7
$= 2y = -33y - 7 = y = \frac{-7}{35} = -\frac{1}{5} \times x = -\frac{1}{5} = \frac{3}{5}$
$A = (\frac{3}{5}, -\frac{1}{5})$
For intersection point B, consider D and D.
Substituting 0 into 2 yields $2(20c) = 11x - 7$ $\Rightarrow 4x = 110c - 7 \Rightarrow 7x = 7 \Rightarrow x = 1$
$L_1 D, y = 2(1) = 2. : B = (1, 2)$
Length OB is given by $\sqrt{1^2 + 2^2} = \sqrt{5}$ and length AB is given by $\sqrt{(2-(-\frac{1}{5}))^2 + (1-\frac{3}{5})^2}$
and length AB is given by $\sqrt{(2-(-\frac{1}{5}))^2+(1-\frac{3}{5})^2}$
$= \sqrt{\frac{11}{5}} \frac{1}{2} + \left(\frac{2}{5}\right)^2 - \sqrt{\frac{121}{5}} + \frac{14}{25} - \sqrt{\frac{125}{25}} - \sqrt{\frac{5}{25}}$
V (5) V 25 25 V 25
: Length OB = Length AB.
(6 marks)

Turn over for the next question

The transformation matrix $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ maps point P to point Q.

The transformation matrix $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$ maps point Q to point R.

Point R is (-4, 3).

Work out the coordinates of point P.

Let
$$P = \begin{pmatrix} x \\ 5 \end{pmatrix}$$
. Then $\begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} x \\ 5 \end{pmatrix} = \begin{pmatrix} -y \\ -x \end{pmatrix}$

So
$$Q = \begin{pmatrix} -5 \\ -2c \end{pmatrix}$$
. Then $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix} \begin{pmatrix} -5 \\ -x \end{pmatrix} = \begin{pmatrix} -5 \\ x \end{pmatrix}$

So
$$R = \begin{pmatrix} -9 \\ 20 \end{pmatrix} = \begin{pmatrix} -4 \\ 3 \end{pmatrix}$$

$$P = (x, y) = (3, 4)$$

23	The curve y	= f(x) is such	that $\frac{\mathrm{d}y}{\mathrm{d}x} = -x$	$c(x-2)^2$	(A)	Maximum
	The stationar	y points of the	curve are at	$\left(0, \frac{4}{3}\right)$ and	(2, 0). ×= a	point
	Determine the You must sh	e nature of ea ow your worki	ch stationary	point. N.B	100 E	5.3
	\propto	1 F'(x)	Sign of a	radient or -ve)	x < a : x > 0	1 Minimun 1 Point
	-0.1	0.441	+	<u> </u>	(0,4);	Se. maximum
	0.1	-0.361			Stationary	
	1.9	-0.019	- Commonweapon			an inflection
	2.1	-0.021		1		nt where the
				CUCV	e changes	from concave
				to cor	ivex lin thi	s case) or
				Vice ve	rsa.	
						(4 marks)

END OF QUESTIONS

N.B: If the second derivative, $f''(\infty) = 0$, then you have an inflection point. I-burever, not all inflection points are stationary, so be careful here. If $f''(\alpha) = 0$, then x = a is an inflection point but not necessarily stationary. To check whether x = a is stationary simply theck whether f'(a) = 0. In the question above both x = 0 and x = 0 are stationary as f'(0) = 0 and

